direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×Dic3, C6.9C23, C23.3S3, C22.11D6, (C2×C6)⋊3C4, C6⋊2(C2×C4), C3⋊2(C22×C4), C2.2(C22×S3), (C22×C6).3C2, (C2×C6).12C22, SmallGroup(48,42)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — C22×Dic3 |
Generators and relations for C22×Dic3
G = < a,b,c,d | a2=b2=c6=1, d2=c3, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 76 in 54 conjugacy classes, 43 normal (7 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, C2×C4, C23, Dic3, C2×C6, C22×C4, C2×Dic3, C22×C6, C22×Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C2×Dic3, C22×S3, C22×Dic3
Character table of C22×Dic3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | i | i | -i | i | -i | i | -i | -i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -i | -i | i | -i | i | -i | i | i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -i | -i | -i | i | -i | i | i | i | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | i | i | i | -i | i | -i | -i | -i | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ17 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ21 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ22 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ23 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ24 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
(1 14)(2 15)(3 16)(4 17)(5 18)(6 13)(7 22)(8 23)(9 24)(10 19)(11 20)(12 21)(25 40)(26 41)(27 42)(28 37)(29 38)(30 39)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 7)(13 22)(14 23)(15 24)(16 19)(17 20)(18 21)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)(37 46)(38 47)(39 48)(40 43)(41 44)(42 45)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 34 4 31)(2 33 5 36)(3 32 6 35)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 44 16 47)(14 43 17 46)(15 48 18 45)(19 38 22 41)(20 37 23 40)(21 42 24 39)
G:=sub<Sym(48)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,13)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,8)(2,9)(3,10)(4,11)(5,12)(6,7)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,34,4,31)(2,33,5,36)(3,32,6,35)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,44,16,47)(14,43,17,46)(15,48,18,45)(19,38,22,41)(20,37,23,40)(21,42,24,39)>;
G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,13)(7,22)(8,23)(9,24)(10,19)(11,20)(12,21)(25,40)(26,41)(27,42)(28,37)(29,38)(30,39)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,8)(2,9)(3,10)(4,11)(5,12)(6,7)(13,22)(14,23)(15,24)(16,19)(17,20)(18,21)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,34,4,31)(2,33,5,36)(3,32,6,35)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,44,16,47)(14,43,17,46)(15,48,18,45)(19,38,22,41)(20,37,23,40)(21,42,24,39) );
G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,13),(7,22),(8,23),(9,24),(10,19),(11,20),(12,21),(25,40),(26,41),(27,42),(28,37),(29,38),(30,39),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,7),(13,22),(14,23),(15,24),(16,19),(17,20),(18,21),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33),(37,46),(38,47),(39,48),(40,43),(41,44),(42,45)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,34,4,31),(2,33,5,36),(3,32,6,35),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,44,16,47),(14,43,17,46),(15,48,18,45),(19,38,22,41),(20,37,23,40),(21,42,24,39)]])
C22×Dic3 is a maximal subgroup of
C6.C42 C23.16D6 Dic3.D4 Dic3⋊4D4 C23.21D6 C23.23D6 C23.14D6 S3×C22×C4
C22×Dic3 is a maximal quotient of
C23.26D6 D4.Dic3
Matrix representation of C22×Dic3 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 |
0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 8 | 8 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[1,0,0,0,0,12,0,0,0,0,0,1,0,0,12,1],[1,0,0,0,0,5,0,0,0,0,5,8,0,0,0,8] >;
C22×Dic3 in GAP, Magma, Sage, TeX
C_2^2\times {\rm Dic}_3
% in TeX
G:=Group("C2^2xDic3");
// GroupNames label
G:=SmallGroup(48,42);
// by ID
G=gap.SmallGroup(48,42);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,40,804]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^6=1,d^2=c^3,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export